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What is Commissioning

All of the pieces have been Mainly technicians;
|nSta||ed a few engineers
Sub-system engineers have Engineers & Technicians:
completed testing + visiting experts
The some magic happens ~2 Experienced Physicists,
+ ~5 postdocs & students
GW signals begin appearing in | +1-2 superstars

the data stream



People

Daniel Sigg: HEP PhD. PD @ MIT in GW (1997). Head of LHO (1999) Commissioning.
Keita Kawabe: U Tokyo PhD. PD @ Tokyo, GEO. LHO (2004)

Valera Frolov: HEP PhD and PD. Head of LLO (2002) Commissioning.

Kiwamu lzumi: PhD @ TAMA & CIT. PD @ LHO (2011)

Jenne Driggers: PhD @ CIT. PD @ LHO (2015)

Denis Martynov: PhD @ CIT / LLO (2013 - 2015)

Evan Hall: PhD @ CIT. LHO (2014 - 2016)

Sheila Dwyer: PhD @ MIT (squeezing 2009-2013). PD@LHO

Ryan Derosa: PhD @ LSU. PD @ LLO (2012)

Anamaria Effler: PhD @ LSU. PD@LLO(2012)

Keiko Kokeyama. PhD @ NAOJ. PD Birmingham. PD LSU/LLO (2010-2014)
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What is Commissioning?

Can proceed in stages

ETM

A
Input mode_cleaner (IMC) g
DRMI (central partof [\ ¢
interferometer) = _

IT™M ETM

Each arm cavity (once
tube pumping is complete)

Qutput chain (including .
OMC) v /(RA;: ;tl>©—»GWreadout



«

Residual Gas
> random phase fluctuations
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== Quantum fluctuations

- Seismic vibrations

-== Newtonian Gravity

- SUSpension Thermal noise

=== Mirror Coating Brownian
Mirror Coating Thermo-Optic
Mirror Substrate Brownian
Residual Gas

- ToOtal noise
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Commissioning Schedule

« DRMI: LLO ~ 1 year, LHO ~ 1 month
e Green Arms: LHO ~1 year, LLO ~1 month

* 0-60 Mpc: LHO/LLO ~ 7 months
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Sensitivity Evolution of LIGO Detectors

ILIGO

aLIGO BRS

~ LLO 30-July-2014:
— LLO 27-Nov-2014:
~ LHO 13-Feb-2015:
—— LLO 02-Feb-2015:
~ LHO 07-0ct-2015:
—— LLO 29-Feb-2016:

~— LLO 1-June-2014: 2.2 Mpc
~— LLO 12-June-2014: 6.6 Mpc

42.8 Mpc
192.1 Mpc
4.0 Mpc
495.8 Mpc
607.4 Mpc
720.9 Mpc
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Commissioning Issues

ETM Coating Transmission:
noisy ALS system

Undamped suspension
Vertical modes: many hours
each day to damp them

Decay of PMC

3-f RFPD electronics
saturations / redesign

Frequency Dependent

balancing of the suspensions:

still not complete

Weather: Rain/Wind make
initial lock near impossible

Backscatter of Light: its
everywhere

Thermal AO / Mode Matching

Unstable Signal Cavity;
Alignment Issues

Mystery Noise: still mysterious
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Angular controls
——PUM actuator noise
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aLIGO H1 freerunning DARM, 2015-12—-02 5:30:00 Z

—— Measured

—— Quantum noise

—— Dark noise
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Angular Controls

LL1GO

+ 10-25 Hz dominated by ASC

noise injection

+ 500x higher than Quantum

+ Why?

XX

<

XX

Higher WEFS noise (40x & 200x)
Bad sensor mixing matrix ?
Higher UGF (yes)

Higher Length -> Angle coupling
Bad LP filter (yes)

Too much beam de-centering ?

<+ What do we do now?
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Abbreviated List of Noise Investigations

1) Bi-/Linear coupling through LSC Aux. Loops

2) Bi-/Linear coupling through ASC noise (> 10
Hz)

3) Radiation Pressure anomaly

4) Laser frequency noise (~bilinear)

5) Laser amplitude noise (~bilinear)

6) Audio RAM from EOM

7) Gas Damping (between ERM and ETM)
8) ESD electronics

9) PUM coil driver electronics

10) Correlated noise in OMC PDs

14) Vac chamber motion (audio band)

1) Demodulation of f > 100 kHz laser noise to the
baseband

2) SRM dummy thermal noise

3) Crackling mechanical noise in the blades of the
Quad SUS

4) Excess thermal noise in the Quad monolithic
stage (ears/ fibers)

5) TM HR coating Thermal noise

6) Aux / AR coatings (BS, SRC, ITM)
7) Scattering from Aux. chambers
8) Backscatter from the Beamtubes
9) PUM coil driver electronics

10) Magnetic fields (~RF and baseband)

12) Pointing/Intensity noise of TCS lasers

13) TCS Ring heaters



What Next?



Deep Learning



Deep Machine Learning?

 What problems do we want to solve which we
cannot do yet?

* Mystery noise, tilt-horizontal, angular noise, ...

* What problems are already solvable but quite
difficult?

* GGlobal feedback design, glitch classification

* Are there techniques out there”
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+ 6% higher SNR
<« 7% better BH Mass estimate 10

+ Upper limit on BH bringdown

<+ What do we do now?
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Some Dreams

Use the flashing time series to learn how to lock the interferometer. Multiple
error signals linearized.

Use PEM signals to predict glitches
Array of accelerometers/microphones to synthesize the scattered light noise

Diagnose noisy states of interferometer before the operators. Send SMS to
appropriate scientist.

Predict imminent failure of facility systems with PEM + HVAC sensors.
(power lines, weather, HVAC vibrations)

Slow trends in backscatter or other couplings indicate device failures. (e.qg.
photodiodes, DACSs, wires, laser alignments)

poor operating decisions indicate operator is getting tired



START

© 2015 Microsoft Corporation. All rights reserved. Created by the Azure Machine Learning Team Email: AzurePoster@microsoft.com Download this poster: http://aka.ms/MLCheatSheet == Microsoft




Google TensorFlow

DATA FEATURES
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What ML techniques”

e Unsupervised Learning
e only has input data (no target)
e Supervised Learning (includes all of MS Azure)
* has both input and output (e.g. PEM & h(t))
* Reinforcement Learning
* given knowledge of desired output states

e algorithms learn how to move to desires based on inputs



Removing the Mystery Noise

Many Noise problems
eliminated

All linear regression
combinations checked

Now testing some bilinear
methods by brute force
creation of pseudo channels

Think we need more fully
nonlinear estimator
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Nonlinear Regression

Volterra (1890) series representation; expanded
by Wiener

peyond linear regression; includes ‘by-hand’
nonlinear terms (e.g. higher order polynomials)

kernel based methods, self generate basis

L1 & L2 norms used to reduce complexity /
sparseness



